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Abstract
Background: We address the problem of studying recombinational variations in (human) populations. In
this paper, our focus is on one computational aspect of the general task: Given two networks G1 and G2,
with both mutation and recombination events, defined on overlapping sets of extant units the objective is
to compute a consensus network G3 with minimum number of additional recombinations. We describe a
polynomial time algorithm with a guarantee that the number of computed new recombination events is
within  = sz(G1, G2) (function sz is a well-behaved function of the sizes and topologies of G1 and G2) of the
optimal number of recombinations. To date, this is the best known result for a network consensus problem.

Results: Although the network consensus problem can be applied to a variety of domains, here we focus
on structure of human populations. With our preliminary analysis on a segment of the human Chromosome
X data we are able to infer ancient recombinations, population-specific recombinations and more, which
also support the widely accepted 'Out of Africa' model. These results have been verified independently
using traditional manual procedures. To the best of our knowledge, this is the first recombinations-based
characterization of human populations.

Conclusion: We show that our mathematical model identifies recombination spots in the individual
haplotypes; the aggregate of these spots over a set of haplotypes defines a recombinational landscape that
has enough signal to detect continental as well as population divide based on a short segment of
Chromosome X. In particular, we are able to infer ancient recombinations, population-specific
recombinations and more, which also support the widely accepted 'Out of Africa' model. The agreement
with mutation-based analysis can be viewed as an indirect validation of our results and the model. Since the
model in principle gives us more information embedded in the networks, in our future work, we plan to
investigate more non-traditional questions via these structures computed by our methodology.
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Background
Reconstructing the recombinational history of a DNA
fragment has proved to be a difficult problem and can
only be achieved at small scales. Nonetheless the recon-
struction of the history of long fragments, is of great inter-
est to geneticists. Although the mutational history of
adjacent fragments is independent, this is not true for
recombinational history: thus merging adjoining net-
works add a new level of richness in complexity in terms
of the suite of recombination events that shape variations
within and across populations (both populations sub-
structures as well as possible migratory history).

This paper explores the combinatorics involved in incor-
porating recombination events into the topology. While it
is possible to give loose bounds on the number of recom-
bination events using some convenient and clever varia-
tion of the Four Gamete Rule [1], the actual enumeration
of the recombinations by a careful exploration of the
underlying combinatorics will tighten this bound, as well
as give additional information such as participating line-
ages, time-ordering of the recombination events and so
on. However, it is important to note that the correspond-
ing combinatorial optimization problem cannot be
solved exactly unless P = NP [2,3]. Nevertheless, there
have been various efforts to give a good estimate of a
bound on this number (see [4] and citations therein).

In this paper, we address the problem of computing a con-
sensus a pair of phylogenetic networks G1 and G2 to give
G3 with a minimum number of new recombination events
to jointly explain G1 and G2. Such a network G3 satisfies
certain characteristics due to the very nature of its genesis:
this is called a compatible network [5]. In this paper we pre-
sented a topology-based methodology to understand
genetic variations in human haplotype data: We first clus-
ter (possibly overlapping) haplotypes that display no evi-
dence of recombinations and a representative haplotype
of each cluster is extracted for the next phase. Then
exploiting the coherence seen in such data, each haplo-
type is recoded using patterns of SNPs (patterns seen
across different haplotypes). Finally, a network is con-
structed from the recoded representative haplotypes.
Using a divide-and-conquer paradigm, the haplotype is
segmented to give simple structures and then these indi-
vidual structures are merged to give a unified topology
using a DSR Scheme (see Methods). Clearly, each stage is
algorithmically non-trivial, however optimizing the
number of recombination events in the merging phase is
a critical component. This is our focus in this paper. The
interested reader is directed to [5] for other details includ-
ing the rationale of the model.

In this paper, we analyze the performance of the DSR
Scheme in two ways. Firstly, we give a mathematical eval-

uation of the algorithm. In other words, how far are we
from the optimal number of new recombinations that
explain the data? We show that the greedy polynomial
time DSR based algorithm guarantees that the number of
computed new recombination events is within  = sz(G1,
G2) (see Eqn 2) of the optimal number of recombinations.
To date, this is the best known result for a network con-
sensus problem. Note that the computation of consensus
trees (or networks) is a very battered problem in literature.
Thus, although our model is derived from the special set-
ting discussed above, the problem and its solution is of
interest in a general context involving reticulation events.
See for example [6,7]. The ideas in pair-wise consensus is
easily extendible to k-wise consensus.

Secondly, we examine how well the algorithm performs
on real data. We apply the method on 100 Kb segment of
high SNP density in the recombining part of the X chro-
mosome. With our preliminary analysis from a phylogeo-
graphic viewpoint, we are able to infer ancient
recombinations, population-specific recombinations and
more (see Experimental Results) which also support the
widely accepted 'Out of Africa' model. These results are
consistent with established mutation-based methods:
thus this can be taken as an indirect validation of our anal-
ysis and the methodology.

Methods
Here we discuss the underlying mathematical model. We
are given H units or extant individuals, each of which has
F features. Each feature is a SNP (Single Nucleotide Poly-
morphism) and a unit is a haplotype. To keep the paper
self-contained in this section we reproduce the notation
used in [5]. A network G is a directed acyclic graph (DAG)
and is defined as follows: It has three kinds of nodes. A
node with no incoming edge is a root node and G may
have multiple root nodes. A node with no outgoing edges
is a leaf node. Each leaf node is labeled with nonempty
sets haplotype labels. Every other node is an internal node.
A node has at most two incoming edges. When a node has
exactly one incoming edge, it is called a mutation node and
the incoming edge is called a mutation edge. When the
node has two incoming edges, the node is called a recom-
bination or a hybrid or a reticulation node and the incoming
edges are called recombination or reticulation edges. The
direction of the edges is always towards the leaf nodes
which in the figures in this paper is downwards. To avoid
clutter, only the recombination edges display the direc-
tion as arrows.

Associated with a network G is a segmentation S. The seg-
mentation S is a partition of the F features into some k(≤ F)
(nonoverlapping) subsets. When the features are ordered
say as f1, f2, f3,..., fF, they can be simply written as the
closed interval [1, F], and the segmentation is a collection
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of non-overlapping intervals. For example, if F = 5, a pos-
sible segmentation of interval [1,5] is: S = {[1,2], [3,4],
[5,5]}. The three individual segments are s1 = [1,2], s2 =
[3,4] and s3 = [5,5] with S = {s1, s2, s3}. For convenience,
the three segments are denoted simply by the consecutive
integer labels 1, 2 and 3 and to keep clarity of exposition,
S is written simply as S = {1, 2, 3}. Then each feature f is
written as s: f where s is the segment label that the feature
f belongs to.

For a segmentation S, the labeling of the edges of G are as
follows: (1) Mutation edge: Every mutation edge e inci-
dent on a node v, has a non-empty label, lbl. Each mem-
ber, s: f, of the label is interpreted as feature f in segment
s. (Note that f itslf may have the form '2:3' as in Figure 1.
Now, if f is associated with segment 9, the label is written
as 9:2:3.) Further, each element appears at most once in
an edge label in G. (2) Recombination edge: The two
recombination edges, e1 and e2, incident on a recombina-
tion node v are labeled by sets of segment labels lbl1 and
lbl2 with lbl1≠ lbl2. For example lbl1 = {1, 3} denoting that
e1 is labeled with the segment labels 1 and 3.

For a segment s ∈ S, Restricted(G, s) is the network
obtained by doing the following two operations:(1)
Removing all recombination edges in G that do not have
the element s in the true edge label lbl'. (2) From each
mutation edge label in G, removing the elements of the
form s: f, for any f, from the edge label. For a concrete
example see Figures 1(b) and 1(c). This definition is easily
extended to multiple segments as Restricted(G, S'), where
S' ⊆ S.

G is always associated with a segmentation S of the F fea-
tures, hence written as (G, S). Note that G cannot be any
arbitrary network. It must satisfy the following: for each s
∈ S, Restricted(G, s) is devoid of recombinations. Such a
network is termed compatible. The Consensus Compatible
Network Problem is defined as follows [5]: Given two com-
patible networks (G1, S1) and (G2, S2) with no common
features (thus S1 ∩ S2 = ∅), the task is to compute a com-
patible network (G3, S1∪ S2) with the minimum number
of additional recombination nodes such that (G1, S1) is
isomorphic to Restricted(G3, S1) and (G2, S2) to
Restricted(G3, S2).

In the remainder of the paper, we refer to (G, S) simply as
G, and segmentation S will be clear from context.

The Dominant Subdominant Recombinant (DSR) 
framework
The DSR scheme to solve the problem and its proof of cor-
rectness was presented in [5]. The method is an iterative,
bottom-up working at one level of G1 and G2 at a time. The
level of a node is defined as the maximum distance to a
leafnode.

The same level is also associated with any edge e incident
on the node written as level(e, G). A leaf is at level 0. The
method gets its name from the need to give one of three
possible assignments, Dominant (D) or Subdominant (S)
or Recombinant (R), to nodes at each iteration, which is
central to this scheme.

In (a) & (b) G1 and G2 have segmentation S = {2, 3, 4}Figure 1
In (a) & (b) G1 and G2 have segmentation S = {2, 3, 4}. (b) The two parents of node 'R' have labels {4, 2} and {3, 2}. Thus, the net-
work restricted to segment label 2, shown in (c), has a closed path defined by the nodes labeled 'Z', 'W', 'U', 'R' and 'V'. Hence 
the network in (b) is not compatible.
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Matrix Xl

Let G have t roots. For root vi introduce an incoming edge

ei, 1 ≤ i ≤ t. Then the height of G is defined as 

(level(ei, G)). Let lmax (lmin) be the maximum (minimum)

of the heights of G1 and G2. For a fixed level l, let (i = 1, 2),

 = {e is an edge in Gi | level(e, Gi) = l}. Then intersection

nl × ml matrix Xl is defined as  and an example

is shown in Fig 2. In the algorithm the intersection matrix,
Xl had dimensions (nl + 1) × (ml + 1) as this extra last row

(column) with header '-ϕ-' is required to take care of ele-
ments that are not covered by the rest of the columns (or

rows). An empty entry is shown as '∅'. In X1 the exact

entries can be computed and for Xl, l > 1 and the non-

empty entries are identified by '{·}'. Further, let xl be the

number of non-empty entries in Xl. See Figure 2 for an

example.

DSR assignment rules
The non-empty entries of Xl are given a DSR assignment.
Note that at least two conditions are required for a viable
compatible network G3. (Rule 1): Each row (column) in
matrix Xl has at most one dominant. If the row (column)
has no dominant, then it has at most one subdominant.
(Rule 2): A non-recombinant element can have another
non-recombinant in its row or its column but not both. As
a result of the DSR assignments to the entries on Xl, the
rows and columns also get implicitly assigned as follows.
A row (column) that has a dominant entry is assigned
dominant. A row (column) that is not assigned dominant
but has a subdominant in the row (column) gets assigned
subdominant. A row (column) that has only recom-

binants in the row (column) is assigned recombinant.
Note that only dominant rows (columns) contribute to
entries in Xl', l' > l. Figures 4 and 5 give two different
assignments giving the two different networks in Figure 3
(a) and (b) respectively. Using a simple greedy optimiza-
tion approach, we include a third rule. (Rule 3): Minimize
the number of recombinants in Xl. Complete examples are
worked out in Figures 4, 5, 6 and 7 for the interested
reader.

Approximation factor of the greedy DSR scheme
In this section, we compute the approximation factor
[8,9] of the greedy version of the DSR Scheme. Let the
number of new recombination events produced by the
DSR algorithm in G3 be NDSR. Let the optimal number of
new recombinations be Nopt. We use the following defini-
tion of the true approximation factor:

For given graphs G1 and G2 let zl = max(nl, ml) where nl > 0

and ml > 0 are the number of nodes at level l in G1 and G2

respectively. Further, let Z be the sum of all zl over all the

levels (excluding the leaf level). Let Lv(G) be all the leafn-

odes (extant units) reachable from node v in G. For each

level, l > 0, i.e. excluding the leafnodes, consider  (G1),

1 ≤ i ≤ nl, where each vi is at level l in G1. Similarly consider

 (G2), 1 ≤ i ≤ ml, where each ui is at level l in G2. Let xl

be the number of non-empty intersections between the
two collection of sets and let Y be the sum of xl over all the

max i
t
=1

Ei
l

X E El
l l= ×1 2

approx
N N

Ntrue =
−DSR opt

opt
. (1)

Lvi

Lui

Given trees T1 in (a) and T2 in (b), each of height 3Figure 2
Given trees T1 in (a) and T2 in (b), each of height 3. (c) These two trees define Xl, 1 ≤ l ≤ 3, for each level l. Note that the entries 
in Xl, l > 1 differ in details depending on the choices the DSR algorithm makes. While '∅' denotes an empty set, '?' (including 
'{·}') could be either empty or non-empty, again depending on the choices the DSR Scheme makes.
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levels (excluding leaf level). Note that if G1 and G2 are the

same (isomorphic) graphs then Y = Z and Nopt = 0.

Theorem 1

Proof: Let Nmax (Nmin) be the maximum (minimum)
number of new recombinations produced by the DSR
scheme over all possible DSR assignments. Then we first
show the following:

Nmin≤ Nopt≤ NDSR≤ Nmax. (3)

Clearly Nopt≤ Nmax holds (else it contradicts the optimality
of Nopt). Next we have to show that Nmin ≤ Nopt holds as
well. For this we need a few more characterizations of the
network.

Recombination node descriptor F1|F2
Let Y be the set all given haplotypes (or taxa). A split or
bipartition is written as Z1|Z2 where Z1 and Z2 are nonover-
lapping subsets of Y with Y = Z1∪ Z2. A tripartition
Z1|Z2|Z3 is defined similarly. In earlier works (see [7,2]
and citations therein) a mutation event has been associ-
ated with a bipartition of Y and a recombination event
with a tripartition. However, the latter requires certain

approx
Z
Y Ztrue ≤

−max( , )
.

1
(2)

(a) & (b) Two possible consensus networks G1 and G2 for two input trees T1 and T2 of Figure 2Figure 3
(a) & (b) Two possible consensus networks G1 and G2 for two input trees T1 and T2 of Figure 2. (c) The edge labels of G2 have 
been locally shuffled keeping the exact same topology.

X-matrices of Network G1 of Figure 3(a)Figure 4
X-matrices of Network G1 of Figure 3(a). The Xl matrix is shown on the top and the DSR assignment shown in the bottom row 
for each l, 1 ≤ l ≤ 3.
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restrictions in the form of network G, i.e., a recombina-
tion node cannot be a direct descendent of another
recombination node. Here we define recombination
nodes as a bipartition of an appropriate subset of features.

For a fixed segment s, let s-path be a path in the graph with
mutation edge(s) and recombinant edge(s) with s in its
label. For any v, note that there is a unique s-path from a
root to v. Further, let v be a recombination node and lbl1
and lbl2 be the labels of the two incoming (recombina-
tion) edges u1v and u2v respectively. For s1 ∈ lbl1 but s1 ∉
lbl2, let feature f1 be such that s1 : f1 is in the label of the

closest mutation edge on the s1-path from v. Then F1 is the
set of all such features. F2 is defined similarly. For example
in G1 of Figure 1(a), consider the recombination leafnode
labeled with haplotype a. Here lbl1 = {2}, lbl2 = {3} and
the descriptor for this node is F1|F2 = {2:4}|{3:5}. For the
recombination node labeled 'R', lbl1 = {4}, lbl2 = {2, 3}
and the descriptor is F1|F2 = {4:7} | {2:9, 3:8}.

Isomorphism (G1 ≡ G2))
Let Lv(G) be all the leafnodes (extant units) reachable
from node v. Let s: f be in the label of the unique incoming
edge on mutation node v and then let Ls: f (G) be the same

X-matrices of Network G2 of Figure 3(b)Figure 5
X-matrices of Network G2 of Figure 3(b). Also see Figure 4 for a description of the matrices.

Consensus of a tree and a networkFigure 6
Consensus of a tree and a network.
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Stepwise construction of G3 of Figure 6(c) as consensus of T1 and G2: (a)–(e) The X matrices and the DSR assignmentsFigure 7
Stepwise construction of G3 of Figure 6(c) as consensus of T1 and G2: (a)–(e) The X matrices and the DSR assignments. (f)–(j) 
The construction of G3 using the DSR assignments of (a)–(e).
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as Lv. Two compatible networks G1 and G2 on the same
segmentation S are isomorphic (or identical), written as G1
≡ G2, if the following two conditions hold: (1) For each
element s: f in G1, Ls: f (G1) = Ls: f (G2) and viceversa, and,
(2) For each recombination node v in G1 with descriptor
F1|F2, there exists a recombination node in G2 with the
same descriptor and viceversa.

Canonical form
It is possible to bubble up or down an element in the muta-
tion edge label to obtain G' such that G' ≡ G. Our conven-
tion will be to bubble down the element of the mutation
edge label, towards a leafnode. A network G is in the
canonical form (1) if no node has only one outgoing edge
and (2) if no element of any mutation edge label can be
bubbled down to obtain G' with G' ≡ G. For example see
Figure 3. Since the levels of nodes in a canonical network
are unique, the following can be readily verified (see also
concrete examples in Figures 2 and 6).

Lemma 1 Let G3 be the consensus of G1 and G2 which are in

canonical forms, with lmax (lmin) as the maximum (minimum)

of the heights of G1 and G2. Then there exist some X-matrices,

X1, X2,..., whose DSR assignments produce G3. This is

written as G3 ≅ X1, X2, ..., .

Back to the proof: We have to show that Nmin ≤ Nopt holds.

Assume the contrary, i.e., Nopt <Nmin. In other words, the

optimal number of new recombinations is even lower
than the minimum produced by the algorithm over all

possible choices. Then consider this network  with
Nopt new recombinations. Then by Lemma 1, there exist a

sequence of X-matrices  ≅ X1, X2, ...,  with some

DSR assignments for each Xl. Thus by these choices of the

algorithm Nmin ≤ Nopt must hold, again leading to a con-

tradiction.

Hence Nopt � Nmin. Here ends the proof of correctness of
Eqn 3. Next, we give a few characterizations of

the DSR assignment to facilitate the counting of the new
recombinations.

Type I & II (new) recombination events

Let v be a recombination node in G3 with labels lbl1 and

lbl2 on the two incoming edges and descriptor F1|F2. The

recombination event is new if, without loss of generality,

lbl1⊆ S1 and lbl2⊆ S2. In other words, this recombination

node is a result of the consensus of G1 and G2 (and not a

recombination that existed in G1 or G2). A new recombi-

nation node v is of two types: Let e1 (e2) be a mutation

edge in G1 (G2) with a label in F1 (F2). Without loss of gen-

erality, let level(e1, G1) = l. Then the recombination is of

Type I at level l if level(e2, G2) = l and is of Type II at level

l if level(e2, G2) > l. Further, let the number of (non-empty)

entries assigned dominant be , subdominant be 

and recombinant be  in an X-matrix Xl. Then the fol-

lowing can be verified.

Lemma 2 The number of Type I recombination events at level

l in G3 is . The number of Type II recombination events at

level l in G3 is ≤ . Also, the number of recombination

events in a network is bounded below (Nmin) by the number of

Xlmax

Xlmax

′G3

′G3
Xlmax

nl
D nl

S

nl
R

nl
R

n nl
D

l
S+

(a) Xl has five rows and six columnsFigure 8
(a) Xl has five rows and six columns. (b) The rows and columns have been permuted (shuffled) to reveal the three islands (or 
three connected components in the associated bipartite graph).
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Type I recombination events and above (Nmax) by the sum of

the number of Type I and Type II recombination events.

Islands in X

We now give tighter bounds on ,  and  for our
analysis. Consider a bipartite graph B(V, E) with V parti-
tioned into (1) nl nodes, corresponding to the rows and

(2) ml nodes corresponding to the columns of Xl. The adja-

cency matrix  is obtained from Xl where an empty set

entry is replaced with 0 and a non-empty set entry with 1.
Let the number of connected components [10] of graph
B(V, E) be Cl. Each connected component corresponds to

an island in Xl which is a collection of rows and columns

of Xl. Thus Xl is fragmented into Cl islands, Xl,i, written as:

Xl = Xl,1 + Xl,2 + ... + . See Figure 8 for an example.

Note that this fragmentation is for analysis purposes only.

Further, , for any yl,i, will be written simply

as . Let island Xl,i have xl,i non-empty entries and

let the number of entries assigned Y (D or S or R) in Xl,i be

. Within an island the number of non-recombinants
cannot exceed max(nl,i, ml,i) by Rules 1 and 2.

Lemma 3 For each island Xl,i:

Eqn 4 follows from using Rule 3 in island Xl,i and Eqn 5

from .

Back to the proof: Next, let Nc max(≥ Nmax) and Nc min(≤
Nmin) be some computable functions of the input (see Fig-
ure 9). Using Lemmas 2 and 3, we define appropriate
(computable) Nc maxand Nc minas follows:

Note that the greedy Rule 3 encourages fragmentation of
Xl, l > 1, into islands and under the best case scenario we

get , which is used in Eqn 7
above. Finally, using Eqn 1, we have

The correctness of Eqn 2 is established by setting

 and . Here ends the
proof.

Experimental results and discussion
In the last section we gave a mathematical proof of the
tightness of the number of recombinations estimated by
the model to explain the data. Also, in our earlier work we
had presented results on simulation data with a general
analysis of false positive and false negative errors. In this
section, we discuss results on a segment of Chromosome
X data and the plausibility of the results is verified inde-
pendently by using traditional manual analysis. Due to
the manual component in the verification process, here
we use only small data sets.

nl
D nl

S nl
R

′Xl

Xl Cl,

yl ii

C

l

l lbnd
,== ∑∑ 11

yl il i

lbnd
,,∑

nl i
Y
,

n n n ml i
D

l i
S

l i l i, , , ,max( , ),+ = (4)

n x n ml i
R

l i l i l i, , , ,max( , ).= − (5)

x n n nl i l i
D

l i
S

l i
R

, , , ,= + +

N x Nl c

l

l

max max

min

≤ =∑ (6)

N n x n m

x n

l i
R

l i

l

l i l i l i

l i

l

l l

min ,

,

, , ,

,

min min

( max( , ))

max(

= = −

≥ −

∑ ∑

,, ) min

minmin

m Nl c

l

l

l

l

=∑∑
(7)

n n n ml
D

l
s

l ll

l+ = ∑ max( , )min

approx
N N

N
Nc Nc

Nc

Nc Nc

true =
−

≤ −

≈ −

DSR opt

opt
max min

min

max min
max(1,, min)Nc

(8)

Z n ml ll i

l= ∑ max( , )
,
min Y xll

l= ∑ min

The relative positions of the different counts on the real lineFigure 9
The relative positions of the different counts on the real line. See text for details.
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Chromosome X SNP data
We used a 100 Kb segment of high SNP density in the
recombining part of the X chromosome, starting at
genomic position 87,348,404 (Build 35). In Hapmap II
[11], this segment contains 194 sites, of which only 175
are polymorphic in at least one population. Recombina-
tion rate is ≈ 0.7 cM/Mb, slightly below the ≈ 1 cM/Mb
genomewide average. We chose this segment for two rea-
sons. (1) It does not contain any genes. Thus variation in
this region is less likely to have been shaped by natural
selection and is more likely to reflect purely genomic proc-
esses. (2) The segment does not contain copy number var-
iations or segmental duplications. These could induce
genotyping errors possibly producing ectopic recombina-
tion events, which is not accounted for in the downstream
analysis.

Further, we used only the haplotypes in the hemizygous
males to avoid any phasing errors. These errors would
manifest as phantom recombination events. The popula-

tions used were Yorubans from Nigeria (YRI; N = 30),
Europeans (CEU, N = 30), and a pooled sample of Chi-
nese and Japanese (ASN; N = 45).

Statistical analysis (using p-value estimations)
As a preprocessing step, exploiting the coherence seen in
the data, each haplotype is recoded using blocks of g
SNPs. Based on the combinatorial model, a network is
constructed from the recoded representative haplotypes.
Recall that first the haplotype is segmented to give simple
structures and then these individual structures are merged
with a small number of recombinations to give a unified
topology. Here we discuss the choice of the value of g in
our experiments. Let l be the number of distinct patterns
of the g SNPs across the samples. Using this as a proxy for
the extent of LD in this block, we estimate the p-value of
the number l. Loosely speaking, when these g SNPs are in
linkage equilibrium (or independent), l should be much
larger than when they are in LD.

Distribution of l for g = 5Figure 10
Distribution of l for g = 5. Recall that the randV Scheme is independent of the region but the permV Scheme uses the popula-
tion distribution of the region for a more realistic estimation.
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Let the number of samples be H and let the number of
SNPs be F. Further, let V be a column vector of size H.
Since the SNPs are assumed to be bi-allelic, V which rep-
resents the value of a SNP in the H samples is binary. We
use two schemes, based on the mode of definition of the
F vectors, to estimates the p-value. The range of values of l
seen in our data is 2 ≤ l < 15 and we study the p-value esti-
mates in this range using two schemes.

RandV
In this scheme, V1, V2, ..., VF are defined randomly. In
other words, each entry of each V is picked independently
and uniformly from a set of two alleles. We use 10000 rep-
licates and the distribution of the number of g-sized pat-
terns is shown in Fig 10. The p-values estimated based on
this scheme is shown in the table below. The p-values are
≈ 0.0 for every value of l.

PermV
While the RandV scheme is not incorrect, we make some
domain-dependent modifications to design another
scheme. In the PermV scheme we (i) mimic the allele fre-
quencies seen in the input data and (ii) use the popula-
tion distribution, by ethnicity, of the screened samples in
the chromosomal region. The individual V vectors are
plucked from the X-Chromosome of the database (but the
SNPs span the entire chromosome) and any untyped SNP
(i.e., N in the database) in the vector is given a value in
agreement with the allele frequency of that column. Fur-
ther, we use only those V 's that have MAF ≥ 0.1. We again
use 10000 replicates and for each replicate, we randomly
permute the F vectors. The distribution of the number of
g-sized patterns is shown in Fig 10(b).

If for a block, l has an insignificant p-value, then the sub-
sequent analysis risks becoming unreliable. We then
reduce the grain size. An alternative is to discard the
offending SNPs of the block, thus fragmenting the region.
In our experiments we used a grain size g = 5 and the p-
values obtained for this on all the regions were acceptable.
The haplotypes are re-coded as sequence of these SNP pat-
terns for the combinatorial analysis discussed in the Meth-
ods section.

Result analysis
We show a sample network of a short segment of the cho-
sen region in Figure 11. Here we summarize our observa-
tions from a phylogeographic viewpoint and answer only
questions raised traditionally in this area. Table 1 shows
the number of detected recombination events and how
they are shared across populations. The observations
(over the entire 100 Kb segment) are as follows: We dis-
covered a total of 31 recombinations in the data. Seven-
teen recombinations are population-specific, and can be
used to infer the recombinational diversity within a pop-
ulation. Assuming recombination rate is constant across
populations, this is a function of the effective population
size of each population. Four recombinations are shared
among pairs of populations, and can be used as indicators
of shared population ancestry. In this particular case, both
Europeans and Asians share events with the African pop-
ulation, which is more recombinationally diverse. Ten
recombinations are shared among all three populations,
and they are presumably ancient events that occurred
before the split of the three populations.

The network on segment Chr X: 87390235–87412114 of the three populationsFigure 11
The network on segment Chr X: 87390235–87412114 of the three populations. The leafnodes are labeled with (a set of) clus-
ters of the input haplotypes. A label on an internal node is for reference purposes only. An element of the edge label is to be 
interpreted as segment-id:position-id:pattern-id.
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Mutation-based studies of genetic diversity have shown
exactly the same pattern: a larger diversity in Africans, and
variation outside of Africa that is partially a subset of that
in Africa. Our recombination-based results follow the
same pattern, and, as the mutation data, fit the the "Out
of Africa" model [12] for the origin of anatomically mod-
ern humans. Consistency with mutation data can be taken
as an indirect validation of our analysis and the method-
ology. In our future work, we plan to investigate (raise as
well as answer) more non-traditional questions.

Conclusion
We have addressed the problem of studying recombina-
tional variations in human populations. One of the con-
tributions of this work is a guaranteed upper bound on
the approximation factor (ratio of discovered new recom-
bination events to the true optimal) in a greedy polyno-
mial time algorithm to construct a consensus network.
Such an assurance is of significance when dealing with
data where there are no other reasonable means of cross-
checking results. To date, this bound is the best known
result for this problem. We use this scheme to study
recombinational imprints in an appropriate segment of X
chromosome from three populations. While the upper
bound on the approximation is our theoretical contribu-
tion, our second contribution is the results on this data:
With our preliminary analysis, we are able to infer ancient
recombinations, population-specific recombinations and
more, which also support the widely accepted 'Out of
Africa' model. The agreement with mutation-based analy-
sis can be viewed as an indirect validation of our results
and the methodology. In our future work, we plan to
investigate more non-traditional questions via the net-
works computed by our methodology.
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Table 1: 

CEU ASN YRI

CEU 2 0 1
ASN 4 3
YRI 11

CEU & ASN & YRI: 10
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